适配时间 | 模型名称 |
---|---|
Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6 |
Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 |
[25/08/22] 我们支持了 OFT 和 OFTv2 模型的微调。查看 examples 以使用。
[25/08/20] 我们支持了 Intern-S1-mini 模型的微调。查看 PR #8976 以使用。
[25/08/06] 我们支持了 GPT-OSS 模型的微调。查看 PR #8826 以使用。
[25/07/02] 我们支持了 GLM-4.1V-9B-Thinking 模型的微调。
[25/04/28] 我们支持了 Qwen3 系列模型的微调。
[25/04/21] 我们支持了 Muon 优化器。详细用法请参照 examples。感谢 @tianshijing 的 PR。
[25/04/16] 我们支持了 InternVL3 模型的微调。查看 PR #7258 以使用。
[25/04/14] 我们支持了 GLM-Z1 和 Kimi-VL 模型的微调。
[25/04/06] 我们支持了 Llama 4 模型的微调。查看 PR #7611 以使用。
[25/03/31] 我们支持了 Qwen2.5 Omni 模型的微调。查看 PR #7537 以使用。
[25/03/15] 我们支持了 SGLang 推理后端,请使用 infer_backend: sglang
启用。
[25/03/12] 我们支持了 Gemma 3 模型的微调。
[25/02/24] 我们宣布开源 EasyR1,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
[25/02/11] 我们支持了在导出模型时保存 Ollama 配置文件。详细用法请参照 examples。
[25/02/05] 我们支持了在语音理解任务上微调 Qwen2-Audio 和 MiniCPM-o-2.6 模型。
[25/01/31] 我们支持了 DeepSeek-R1 和 Qwen2.5-VL 模型的微调。
[25/01/15] 我们支持了 APOLLO 优化器。详细用法请参照 examples。
[25/01/14] 我们支持了 MiniCPM-o-2.6 和 MiniCPM-V-2.6 模型的微调。 感谢 @BUAADreamer 的 PR.
[25/01/14] 我们支持了 InternLM 3 模型的微调。感谢 @hhaAndroid 的 PR。
[25/01/10] 我们支持了 Phi-4 模型的微调。
[24/12/21] 我们支持了使用 SwanLab 跟踪与可视化实验。详细用法请参考 此部分。
[24/11/27] 我们支持了 Skywork-o1 模型的微调和 OpenO1 数据集。
[24/10/09] 我们支持了从 魔乐社区 下载预训练模型和数据集。详细用法请参照 此教程。
[24/09/19] 我们支持了 Qwen2.5 模型的微调。
[24/08/30] 我们支持了 Qwen2-VL 模型的微调。感谢 @simonJJJ 的 PR。
[24/08/27] 我们支持了 Liger Kernel。请使用 enable_liger_kernel: true
来加速训练。
[24/08/09] 我们支持了 Adam-mini 优化器。详细用法请参照 examples。感谢 @relic-yuexi 的 PR。
[24/07/04] 我们支持了无污染打包训练。请使用 neat_packing: true
参数。感谢 @chuan298 的 PR。
[24/06/16] 我们支持了 PiSSA 算法。详细用法请参照 examples。
[24/06/07] 我们支持了 Qwen2 和 GLM-4 模型的微调。
[24/05/26] 我们支持了 SimPO 偏好对齐算法。详细用法请参照 examples。
[24/05/20] 我们支持了 PaliGemma 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 paligemma
模板进行微调使其获得对话能力。
[24/05/18] 我们支持了 KTO 偏好对齐算法。详细用法请参照 examples。
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅安装部分。
[24/04/26] 我们支持了多模态模型 LLaVA-1.5 的微调。详细用法请参照 examples。
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 Colab 笔记本。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 Llama3-8B-Chinese-Chat 和 Llama3-Chinese。
[24/04/21] 我们基于 AstraMindAI 的仓库支持了 混合深度训练。详细用法请参照 examples。
[24/04/16] 我们支持了 BAdam 优化器。详细用法请参照 examples。
[24/04/16] 我们支持了 unsloth 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 117% 的训练速度和 50% 的显存节约。更多数据请见此页面。
[24/03/31] 我们支持了 ORPO。详细用法请参照 examples。
[24/03/21] 我们的论文 "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models" 可在 arXiv 上查看!
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 FSDP+QLoRA。详细用法请参照 examples。
[24/03/13] 我们支持了 LoRA+。详细用法请参照 examples。
[24/03/07] 我们支持了 GaLore 优化器。详细用法请参照 examples。
[24/03/07] 我们集成了 vLLM 以实现极速并发推理。请使用 infer_backend: vllm
来获得 270% 的推理速度。
[24/02/28] 我们支持了 DoRA 微调。请使用 use_dora: true
参数进行 DoRA 微调。
[24/02/15] 我们支持了 LLaMA Pro 提出的块扩展方法。详细用法请参照 examples。
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该博客页面。
[24/01/18] 我们针对绝大多数模型实现了 Agent 微调,微调时指定 dataset: glaive_toolcall_zh
即可使模型获得工具调用能力。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 unsloth 的 LoRA 训练加速。请使用 use_unsloth: true
参数启用 unsloth 优化。该方法可提供 170% 的训练速度,详情请查阅此页面。
[23/12/12] 我们支持了微调最新的混合专家模型 Mixtral 8x7B。硬件需求请查阅此处。
[23/12/01] 我们支持了从 魔搭社区 下载预训练模型和数据集。详细用法请参照 此教程。
[23/10/21] 我们支持了 NEFTune 训练技巧。请使用 neftune_noise_alpha: 5
参数启用 NEFTune。
[23/09/27] 我们针对 LLaMA 模型支持了 LongLoRA 提出的 -Attn。请使用 shift_attn: true
参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 examples。
[23/09/10] 我们支持了 FlashAttention-2。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 flash_attn: fa2
参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 RoPE 插值来扩展 LLaMA 模型的上下文长度。请使用 rope_scaling: linear
参数训练模型或使用 rope_scaling: dynamic
参数评估模型。
[23/08/11] 我们支持了指令模型的 DPO 训练。详细用法请参照 examples。
[23/07/31] 我们支持了数据流式加载。请使用 streaming: true
和 max_steps: 10000
参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目(LLaMA-2 / Baichuan)。
[23/07/18] 我们开发了支持训练和测试的浏览器一体化界面。请使用 train_web.py
在您的浏览器中微调模型。感谢 @KanadeSiina 和 @codemayq 在该功能开发中付出的努力。
[23/07/09] 我们开源了 FastEdit ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 FastEdit 项目。
[23/06/29] 我们提供了一个可复现的指令模型微调示例,详细内容请查阅 Baichuan-7B-sft。
[23/06/22] 我们对齐了示例 API 与 OpenAI API 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中。
[!TIP]
如果您无法使用最新的功能,请尝试重新拉取代码并再次安装 LLaMA-Factory。
模型名 | 参数量 | Template |
---|---|---|
Baichuan 2 | 7B/13B | baichuan2 |
BLOOM/BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | - |
ChatGLM3 | 6B | chatglm3 |
Command R | 35B/104B | cohere |
DeepSeek (Code/MoE) | 7B/16B/67B/236B | deepseek |
DeepSeek 2.5/3 | 236B/671B | deepseek3 |
DeepSeek R1 (Distill) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
Falcon | 7B/11B/40B/180B | falcon |
Falcon-H1 | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
Gemma/Gemma 2/CodeGemma | 2B/7B/9B/27B | gemma/gemma2 |
Gemma 3/Gemma 3n | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
GLM-4/GLM-4-0414/GLM-Z1 | 9B/32B | glm4/glmz1 |
GLM-4.1V | 9B | glm4v |
GLM-4.5/GLM-4.5V* | 106B/355B | glm4_moe/glm4v_moe |
GPT-2 | 0.1B/0.4B/0.8B/1.5B | - |
GPT-OSS | 20B/120B | gpt |
Granite 3.0-3.3 | 1B/2B/3B/8B | granite3 |
Granite 4 | 7B | granite4 |
Hunyuan | 7B | hunyuan |
Index | 1.9B | index |
InternLM 2-3 | 7B/8B/20B | intern2 |
InternVL 2.5-3.5 | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
InternLM/Intern-S1-mini | 8B | intern_s1 |
Kimi-VL | 16B | kimi_vl |
Llama | 7B/13B/33B/65B | - |
Llama 2 | 7B/13B/70B | llama2 |
Llama 3-3.3 | 1B/3B/8B/70B | llama3 |
Llama 4 | 109B/402B | llama4 |
Llama 3.2 Vision | 11B/90B | mllama |
LLaVA-1.5 | 7B/13B | llava |
LLaVA-NeXT | 7B/8B/13B/34B/72B/110B | llava_next |
LLaVA-NeXT-Video | 7B/34B | llava_next_video |
MiMo | 7B | mimo |
MiniCPM | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
MiniCPM-o-2.6/MiniCPM-V-2.6 | 8B | minicpm_o/minicpm_v |
Ministral/Mistral-Nemo | 8B/12B | ministral |
Mistral/Mixtral | 7B/8x7B/8x22B | mistral |
Mistral Small | 24B | mistral_small |
OLMo | 1B/7B | - |
PaliGemma/PaliGemma2 | 3B/10B/28B | paligemma |
Phi-1.5/Phi-2 | 1.3B/2.7B | - |
Phi-3/Phi-3.5 | 4B/14B | phi |
Phi-3-small | 7B | phi_small |
Phi-4 | 14B | phi4 |
Pixtral | 12B | pixtral |
Qwen (1-2.5) (Code/Math/MoE/QwQ) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
Qwen3 (MoE/Instruct/Thinking) | 0.6B/1.7B/4B/8B/14B/32B/235B | qwen3/qwen3_nothink |
Qwen2-Audio | 7B | qwen2_audio |
Qwen2.5-Omni | 3B/7B | qwen2_omni |
Qwen2-VL/Qwen2.5-VL/QVQ | 2B/3B/7B/32B/72B | qwen2_vl |
Seed Coder | 8B | seed_coder |
Skywork o1 | 8B | skywork_o1 |
StarCoder 2 | 3B/7B/15B | - |
TeleChat2 | 3B/7B/35B/115B | telechat2 |
XVERSE | 7B/13B/65B | xverse |
Yi/Yi-1.5 (Code) | 1.5B/6B/9B/34B | yi |
Yi-VL | 6B/34B | yi_vl |
Yuan 2 | 2B/51B/102B | yuan |
[!NOTE]
对于所有“基座”(Base)模型,template
参数可以是default
,alpaca
,vicuna
等任意值。但“对话”(Instruct/Chat)模型请务必使用对应的模板。请务必在训练和推理时采用完全一致的模板。
*:您需要从 main 分支安装
transformers
并使用DISABLE_VERSION_CHECK=1
来跳过版本检查。**:您需要安装特定版本的
transformers
以使用该模型。
项目所支持模型的完整列表请参阅 constants.py。
您也可以在 template.py 中添加自己的对话模板。
方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
---|---|---|---|---|
预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
[!TIP]
有关 PPO 的实现细节,请参考此博客。
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
pip install --upgrade huggingface_hub
huggingface-cli login
必需项 | 至少 | 推荐 |
---|---|---|
python | 3.9 | 3.10 |
torch | 2.0.0 | 2.6.0 |
torchvision | 0.15.0 | 0.21.0 |
transformers | 4.49.0 | 4.50.0 |
datasets | 2.16.0 | 3.2.0 |
accelerate | 0.34.0 | 1.2.1 |
peft | 0.14.0 | 0.15.1 |
trl | 0.8.6 | 0.9.6 |
可选项 | 至少 | 推荐 |
---|---|---|
CUDA | 11.6 | 12.2 |
deepspeed | 0.10.0 | 0.16.4 |
bitsandbytes | 0.39.0 | 0.43.1 |
vllm | 0.4.3 | 0.8.2 |
flash-attn | 2.5.6 | 2.7.2 |
* 估算值
方法 | 精度 | 7B | 14B | 30B | 70B | x B |
---|---|---|---|---|---|---|
Full (bf16 or fp16 ) |
32 | 120GB | 240GB | 600GB | 1200GB | 18x GB |
Full (pure_bf16 ) |
16 | 60GB | 120GB | 300GB | 600GB | 8x GB |
Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 2x GB |
QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | x GB |
QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | x/2 GB |
QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | x/4 GB |
[!IMPORTANT]
此步骤为必需。
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、openmind、swanlab、dev
docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
该镜像基于 Ubuntu 22.04(x86_64)、CUDA 12.4、Python 3.11、PyTorch 2.6.0 和 Flash-attn 2.7.4 构建。
查看全部镜像:https://hub.docker.com/r/hiyouga/llamafactory/tags
请参阅构建 Docker 来重新构建镜像。
使用 uv 创建隔离的 Python 环境:
uv sync --extra torch --extra metrics --prerelease=allow
在环境中运行 LLaMA-Factory:
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
Windows 平台需要额外手动安装 GPU 版本的 PyTorch 依赖包,您可以参考官方网站和以下命令安装并测试 PyTorch 是否正确安装。
pip uninstall torch torchvision torchaudio
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
python -c "import torch; print(torch.cuda.is_available())"
如果看到 True
则说明安装成功。
若遇到类似 Can't pickle local object
的报错,请设置 dataloader_num_workers: 0
。
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 bitsandbytes
库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的发布版本。
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
如果要在 Windows 平台上开启 FlashAttention-2,请使用 flash-attention-windows-wheel 中的脚本自行编译与安装。
在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 pip install -e ".[torch-npu,metrics]"
命令安装。此外,还需要安装 Ascend CANN Toolkit 与 Kernels,安装方法请参考安装教程或使用以下命令:
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
# 安装 CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# 安装 CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
依赖项 | 至少 | 推荐 |
---|---|---|
CANN | 8.0.RC1 | 8.0.0.alpha002 |
torch | 2.1.0 | 2.4.0 |
torch-npu | 2.1.0 | 2.4.0.post2 |
deepspeed | 0.13.2 | 0.13.2 |
vllm-ascend | - | 0.7.3 |
请使用 ASCEND_RT_VISIBLE_DEVICES
而非 CUDA_VISIBLE_DEVICES
来指定运算设备。
如果遇到无法正常推理的情况,请尝试设置 do_sample: false
。
如果要在 Ascend NPU 上进行基于 bitsandbytes 的 QLoRA 量化微调,请执行如下步骤:
# 从源码安装 bitsandbytes
# 克隆 bitsandbytes 仓库, Ascend NPU 目前在 multi-backend-refactor 中支持
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
cd bitsandbytes/
# 安装依赖
pip install -r requirements-dev.txt
# 安装编译工具依赖,该步骤在不同系统上命令有所不同,供参考
apt-get install -y build-essential cmake
# 编译 & 安装
cmake -DCOMPUTE_BACKEND=npu -S .
make
pip install .
git clone -b main https://github.com/huggingface/transformers.git
cd transformers
pip install .
double_quantization: false
,可参考示例。关于数据集文件的格式,请参考 data/README_zh.md 的内容。你可以使用 HuggingFace / ModelScope / Modelers 上的数据集或加载本地数据集。
[!NOTE]
使用自定义数据集时,请更新data/dataset_info.json
文件。
您也可以使用 Easy Dataset、DataFlow 和 GraphGen 构建用于微调的合成数据。
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA 微调、推理和合并。
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
高级用法请参考 examples/README_zh.md(包括多 GPU 微调)。
[!TIP]
使用llamafactory-cli help
显示帮助信息。遇到报错请先看常见问题。
llamafactory-cli webui
详情阅读该文档。
CUDA 用户:
cd docker/docker-cuda/
docker compose up -d
docker compose exec llamafactory bash
昇腾 NPU 用户:
cd docker/docker-npu/
docker compose up -d
docker compose exec llamafactory bash
AMD ROCm 用户:
cd docker/docker-rocm/
docker compose up -d
docker compose exec llamafactory bash
CUDA 用户:
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --ipc=host --gpus=all \
-p 7860:7860 \
-p 8000:8000 \
--name llamafactory \
llamafactory:latest
docker exec -it llamafactory bash
昇腾 NPU 用户:
docker build -f ./docker/docker-npu/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=torch-npu,metrics \
-t llamafactory:latest .
docker run -dit --ipc=host \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/davinci0 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
--name llamafactory \
llamafactory:latest
docker exec -it llamafactory bash
AMD ROCm 用户:
docker build -f ./docker/docker-rocm/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --ipc=host \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/kfd \
--device /dev/dri \
--name llamafactory \
llamafactory:latest
docker exec -it llamafactory bash
您可以通过移除 Dockerfile 中 VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
的注释来使用数据卷。
在构建 Docker 时使用参数 -v ./hf_cache:/root/.cache/huggingface
来挂载数据卷。各个数据卷的含义表示如下。
hf_cache
:使用宿主机的 Hugging Face 缓存文件夹。shared_data
:宿主机中存放数据集的文件夹路径。output
:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。API_PORT=8000 llamafactory-cli api examples/inference/llama3.yaml infer_backend=vllm vllm_enforce_eager=true
[!TIP]
API 文档请查阅这里。
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
将 model_name_or_path
设置为模型 ID 来加载对应的模型。在魔搭社区查看所有可用的模型,例如 LLM-Research/Meta-Llama-3-8B-Instruct
。
您也可以通过下述方法,使用魔乐社区下载数据集和模型。
export USE_OPENMIND_HUB=1 # Windows 使用 `set USE_OPENMIND_HUB=1`
将 model_name_or_path
设置为模型 ID 来加载对应的模型。在魔乐社区查看所有可用的模型,例如 TeleAI/TeleChat-7B-pt
。
若要使用 Weights & Biases 记录实验数据,请在 yaml 文件中添加下面的参数。
report_to: wandb
run_name: test_run # 可选
在启动训练任务时,将 WANDB_API_KEY
设置为密钥来登录 W&B 账户。
若要使用 SwanLab 记录实验数据,请在 yaml 文件中添加下面的参数。
use_swanlab: true
swanlab_run_name: test_run # 可选
在启动训练任务时,登录SwanLab账户有以下三种方式:
方式一:在 yaml 文件中添加 swanlab_api_key=<your_api_key>
,并设置为你的 API 密钥。
方式二:将环境变量 SWANLAB_API_KEY
设置为你的 API 密钥。
方式三:启动前使用 swanlab login
命令完成登录。
本仓库的代码依照 Apache-2.0 协议开源。
使用模型权重时,请遵循对应的模型协议:Baichuan 2 / BLOOM / ChatGLM3 / Command R / DeepSeek / Falcon / Gemma / GLM-4 / GPT-2 / Granite / Index / InternLM / Llama / Llama 2 / Llama 3 / Llama 4 / MiniCPM / Mistral/Mixtral/Pixtral / OLMo / Phi-1.5/Phi-2 / Phi-3/Phi-4 / Qwen / Skywork / StarCoder 2 / TeleChat2 / XVERSE / Yi / Yi-1.5 / Yuan 2
如果您觉得此项目有帮助,请考虑以下列格式引用
@inproceedings{zheng2024llamafactory,
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
address={Bangkok, Thailand},
publisher={Association for Computational Linguistics},
year={2024},
url={http://arxiv.org/abs/2403.13372}
}